A line contains points m(1, 2) and n(3, 6) means that there are two points, m and n, that lie on the same line in a coordinate plane. The coordinates of point m are (1, 2) and the coordinates of point n are (3, 6).
This information allows us to find the equation of the line that contains points m and n. One way to do this is by using the slope-intercept form of a linear equation, y = mx + b, where m is the slope of the line and b is the y-intercept.
To find the slope of the line passing through points m and n, we use the formula m = (y2 - y1) / (x2 - x1), where (x1, y1) = (1, 2) and (x2, y2) = (3, 6). Substituting these values into the formula, we get m = (6 - 2) / (3 - 1) = 4 / 2 = 2.
Now that we have the slope of the line, we can use point m(1, 2) in the slope-intercept form equation to find the value of b. Substituting (1, 2) into the equation and m = 2, we get 2 = 2 * 1 + b, which simplifies to 2 = 2 + b, and solving for b we find b = 0.
Therefore, the equation of the line that passes through points m(1, 2) and n(3, 6) is y = 2x.
Ne Demek sitesindeki bilgiler kullanıcılar vasıtasıyla veya otomatik oluşturulmuştur. Buradaki bilgilerin doğru olduğu garanti edilmez. Düzeltilmesi gereken bilgi olduğunu düşünüyorsanız bizimle iletişime geçiniz. Her türlü görüş, destek ve önerileriniz için iletisim@nedemek.page